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A stochastic one-dimensional map which produces a sequence of period dou- 
bling bifurcations is theoretically studied. We obtain analytic expressions, to a 
second-order approximation, of the local distribution function of fluctuating 
orbital points and the Lyapunov number for a noisy 2 n cycle. The expressions 
satisfy scaling laws and well agree with the results of numerical experiments 
when the external noise is weak. A scaling factor for the noise level is formulated 
in terms of the derivatives of a deterministic map. From it, the scaling, factor is 
refined to be 6.6190 . . . .  The Lyapunov number shows that, when the external 
noise is weaker than some extent, the noisy orbit is more stable rather than the 
deterministic one. 

KEY WORDS: Stochastic one-dimensional map; period doubling bifurca- 
tions; Lyapunov number; universal noise effect; universal scaling. 

1. INTRODUCTION 

Recently, universal scaling properties in an infinite sequence of period 
doubling bifurcations have been extensively studied since Feigenbaum's 
discovery. (1) The universalities have been confirmed by some numerical 
experiments on simple dynamical systems. (2-41 In real physical systems, the 
sequence of period doubling bifurcations have been observed (5 7~; how- 
ever, the universalities have not been fully confirmed. Experimental results 
on the universal ratios have been somewhat different from the theoretical 
ones. The reason why the discrepancies appear may be that the observed 
ratios are not asymptotic ones. However, it is possively expected from the 
confirmations by the numerical experiments that the experimental evi- 
dences will be offered in a variety of fields. 

In a real system, the fine structure of the bifurcation sequence is wiped 
out by an unavoidable external noise. Thus, we can observe at most some 
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finite sequence. In order to analyze observed data, it is necessary to 
consider the noise effect. It becomes a significant problem how the external 
noise wipes out the structure. Numerical experiments on the noise effect 
have been carried out on stochastic one-dimensional maps. (8-1~ Some of 
the results obtained by Crutclafield et al. (1~ are as follows. Let us suppose 
that we can see up to 2 n cycle under some external noise. In order to see 
twice, the external noise must have a standard deviation, a, about 6.6 times 
smaller. The Lyapunov number, ~, at an accumulation point, roo, scales 
with the power law such as X(roo, o) = A o  ~ with O = 0.37 +_. 0.01. From the 
results together with the Huberman-Rudnik scaling (1~) of the Lyapunov 
number, they suggest the existence of a homogeneous scaling function 
F(~,a) such that X ( ? , o ) = - ( d / d o ) F ( ? , a )  and F ( L ~ 1 7 6  = L F ( ~ , o ) ,  

where ~ =-- (r - r o o ) / r ~ .  Shraiman e ta / .  (12) have shown that the Lyapunov 
number satisfies a scaling form from a correlation-function expression. 
Then the results have been obtained on the assumption that there exists a 
fixed point of a recursion relation for a renormalized noise amplitude. 

In this paper, the effect of the external noise on the period doubling 
phenomena to chaos is theoretically studied without ambiguous assump- 
tions. One of our interests is how the stability of the 2 ~ cycle is influenced 
by the external noise. The other interest is how the universal features in 
deterministic period doubling phenomena contribute to the noise effect. As 
a dynamical system, we adopt a stochastic one-dimensional map which 
consists of a deterministic one-dimensional map and an additive random 
variable. It is the simplest system exhibiting the universal properties. In 
Section 2, we derive the local form of (2n)th iterate of the stochastic 
one-dimensional map. From the local form, we estimate the noise level 
region in which a period is maintained as a deterministic one. In Section 3, 
universality of the (2")th iterated map is discussed. In Section 4, the 
distribution function of fluctuations around x} n) is obtained, where x~ ~) is a 
deterministic orbital point closest to the maximum point N of the determin- 
istic map. The distribution function is shown to satisfy a scaling form. The 
universal scaling factor,/3, for the noise level is formulated in terms of the 
derivatives of the deterministic map at the orbital points of a stable 2"-point 
cycle. In Section 5, the Lyapunov number is expressed by an integral form. 
It becomes a simple form at a superstable point. The Lyapunov number 
satisfies the scaling form studied by Shraiman et al. 02) The effect of the 
external noise on the stability is discussed. 

. 2nTH ITERATE OF A STOCHASTIC ONE-DIMENSIONAL MAP 

Let us study a stochastic one-dimensional map as 

xm+ , = F ( x  m , r )  + fm (2.1) 
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where F(x, r) is a one-dimensional map exhibiting an infinite sequence of 
period doubling bifurcations with a control parameter r, and fm is a 
Gaussian random variable with (fro)----" 0 and (fmfm')= 023ram '' The dy- 
namical variable Xm ranges over the interval [0, 1] and the function F(x, r) 
has a unique differentiable maximum point ff of a second order. Let 
x(") "(") x2(. ~) be the deterministic orbital points of the 2"-point cycle, 
i.e., F(x(~n),r)---x}+)l for i =  1,2 . . . . .  2 n -  1 and F(x(f.),r)= x} "). The 
point x} ") is closest to 2. Let F, be the superstable point for the determinis- 
tic 2"-point cycle. 

We focus our attention to a 2" cycle with the control parameter r close 
to F, under a weak external noise. The noise is supposed to be weak enough 
for the fluctuations to be localized around the deterministic orbital points 
xi(n ). It is preferable to construct (2")th iterated map. The global form is 
not needed for the present weak noise case. Thus, let us derive the local 
form around x{ "). A dynamical variable A m is defined 

A m = Xmx2.  -- X} n) ( 2 . 2 )  

Let Xmx2. be the (m • 2")th iterate of (2.1) from x o = x} "). The choice of 
the initial condition does not lose a generality for large rn. Am+ l is given by 

Am+ ' : F ( . . .  ( F ( f ( x } n ) - [  - Am)-I'-fM) " l-  f M + l )  " " "  )'l"fM+2. 2) 

+ f M + V - ,  -- x} ") (2.3) 

where M = m • 2". In order to get the local form, each term is expanded in 
powers of a deviation from each corresponding point x} "). 

Since x} ") coincides with ~ at r = F,, x~ ") lies very much close to 2. 
Therefore, we keep the powers of the deviation k m from x~ ") up to the 
second order. In other expansions around x~ '~ i v ~ 1, it may be sufficient to 
keep the terms up to the first order. Then, we get 

where 

Am+l -- A(")A2m + X(")Am + ~m (2.4) 

2 n 

A(n)  ! lg.g. .(n) ,A =~-- t~l ' '11~ F'(x(n), r) (2.5) 
i = 2  

X (n) --  r ( 2 " ) ' ( x } n ) , r )  ( 2 . 6 )  

2 n 

~,,-- IX "/)'~f,~xv+j-1 (2.7) 
j= l  

2 n 

I I  F'(x,("), r) 
i=j+ 1 

y)")= for 1 < j < 2  " -  1, and y2(. ~)= 1 (2.8) 
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where the pr ime denotes  differentiat ion with respect  to x. The  quant i ty  X (') 
is a stability pa rame te r  which changes with r, such as X (') = 1 at r = r., 
X (') = 0 at  r = F. and  X (') = - 1 at r = r.+~, where r. is a b i furcat ion point  
f rom which 2n-point cycle appears .  The  var iable  4,. is a new Gauss ian  
r a n d o m  variable with 

(4m) = 0 and  (~.~4m') = ('~(n)o)23mm" (2.9) 

where 
2 n 

(~t(n)) 2= Z (~t/(n)) 2 (2.10) 
i = 1  

Let  us est imate the condi t ion under  which the per iod of the noisy cycle 
is main ta ined  as 2L Tha t  is, we must  s tudy the localization condi t ion of a 
t ime sequence (A0,A1,A: . . . .  } with A 0 = 0. First, we suppose r = F,, 
A ( ' ) )  0 and  J4ml < ~('), where ~( ' )  = (4lA(n) J) -1. In  A m - Am+ l plane,  the 
i terated stochastic m a p  (2.4) is represented by  a pa rabo la  which r andomly  
shifts up and  down in the vertical direction. The  pa rabo la  at every t ime 
intersects with 45 ~ line as shown in Fig. 1. The  slope of the pa rabo la  at 
lower intersect lies in [ 1 -  ,~-, 1]. Therefore,  if, for some per iod k, the 
r a n d o m  variable  4,, happens  not  to f luctuate appreciably,  i.e., ~m+i ~ 4' for 
i = 0 , 1 , . . . ,  k, A,,+i tends to the lower intersect [ 1 -  ( 1 -  4A( ' ) ( ' )  1/2] 
/ ( 2 A  (,0), However ,  in mos t  cases, the fluctuations. . of 4,~ are ful ly  apprecia-  
ble. W e  consider the sequence (A0,A1,A 2 . . . .  } where A m - - - - - [ 1 - ( 1 -  
4A (") 4m-- 1)1/2]/( 2A ('))" The  quant i ty  A is a virtual limiting point  which is 
realized when ( , ,  n ) m, were fixed to ~m-i. The  real points  A m m a y  be  
regarded as the first steps of vir tual  sequences toward/~m" The  distr ibution 

2A(nIA i'1 , ~  
/ t / / /  

~x i t / / 

""-.. I ~ i / . 
-]"'. !! _~ .... ..'"I 2 A(n)Ai 

Fig. 1. Schematic drawing of (2.4) with X (') = 0.0 at some instance. The dashed curves 
represent (2.4) with ~m = + 1/(4A(')). 



Lyapunov Number for a Noisy 2" Cycle 333 

of/~,~ is localized within the region [ ( - ~ -  + I) /(2A ~n)), 1/(2A ("~)]. Then it 
can be concluded that the distribution of A m is localized. Next, we suppose 
that ~m sometimes fluctuates beyond ~(n). Whenever ~m fluctuates beyond 
~(n~, the next step A,~+1 becomes greater than A m because the parabola 
Am+ l = A(~)A2 m + ~,, is located above 45 ~ line A,,+] = Am. Therefore, fre- 
quent oversteppings of ~m cause the escape of A m from the origin. Once A m 
becomes greater than [1 + (1 + 4 A ( " ) ~ m a x ) ] / z ] / ( 2 A ( ' ) ) ,  which is the upper 
intersect of the parabola shifting most downward with 45 ~ line, every future 
step increasingly goes away from the origin. Thus, as long as the fluctua- 
tions of ~,~ are restricted within [ -~ ( " ) ,  ~(~)], the localization occurs. Here, 
we shall consider the Gaussian noise (2.9), so that the restriction for the 
maximum intensity of the noise is not satisfied. However, if the fluctuations 
beyond g(") rarely occur, the localization must hold. Therefore, the local- 
ization condition turns out to be 

),("~o << 1 
4[A (')l (2. I 1) 

We have supposed X ("~ = 0, but even in the case X (~) v ~ 0, the same can be 
discussed, if Ix(")l << 1. 

A global distribution consists of 2" disjoint distributions. If the local- 
ization discussed above disappears, the disjoint distributions merge pair- 
wise, say, a mergence phenomenon. <8~ If the escape motion from x~ ~ 
occurs, A m must be trapped around F(Z~ In fact, when A (~) ( ~ )0, 
the successive points A m stretch in the /positive ~ direction and x (~) . , exists L negat ive ~ 1 + 2 - 
in the ~positive ) side of x~ ~). 

Lnegat iveJ  

3. UNIVERSALITY OF THE (2n)TH ITERATE OF THE STOCHASTIC 
MAP 

It has been shown (l) that the rescaled local form of the (2n)th iterate of 
F ( x , r )  tends to a universal function as n ~  ~ .  On the basis of the 
universality, it is expected that (2.4) exhibits some universality as n ~ ~ .  
Thus we shall discuss on the universalities of the coefficients A (,0, X(n~, and 
T ( n ) "  

The stability parameter X ~n> has been shown by Daido ~]3~ to have a 
universal form depending upon the control parameter r. He has calculated 
it by a perturbation method up to a second-order approximation, i.e., 

X (n~ ~ 1 - 1.8508x - 0.1492x 2 (3.1) 

where x ~ ( r  - r , ) / ( r , +  l - r , ) .  The variable x may be replaced by 

r~ - r 8 (3.2) X ~  - - - k - - -  
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where d , -=  rn+ 1 - r, and  8 ~-l im,__) |  = 4.6692 . . . .  (1) In  the vi- 
cinity of the onset  point  roo, it is convenient  to consider the dependence  of 
X (") on too - r. F r o m  (3.1) and  (3.2), we get X( ' ) (r~ - r) = X( '+l ) ( ( r : r  - r) 

la). 
Let  us consider a ratio between A (") and  A ("+b  at  points,  say, r and  

r', with corresponding stability for the 2 "- and  2 " + k p o i n t  cycle, i.e., 
X (~) (r) = X (" + ~) (r'). The  ratio A (~ + 1) /A (n) can be writ ten by  

A(n+l) F"(x~n+l),r ')x(n+l)(r ')F'(x{n),r)  

A ( n ~ -  F,,(x~,) ,r)x( , ) (r)F,(x~,+,) ,r ,  ) (3.3) 

As n is increased, x~ ~) and  r tend to accumula t ion  points  ff and  ro~, 
respectively. Thus,  F"(x~ ~), r) becomes  independent  upon  n as n ---) ~ .  For  
large enough n, the ratio (3.3) becomes  F'(x~ ~), r ) /F ' (x~  ~+ 1), r'). Expanding  
the derivatives in powers  of (x~ ") - 2) and  (x~ n+l) - if), we obta in  

A 1 '  - + - 
(3.4) 

A(,)  (X~.+ 1 ) -  ~ )  _[_ O((Xin+ 1)- 2 )  2 ) 

The  ratio between (x~ ~) - ~) and  (x~ "+1) - ~) is well known  to tend to a 
universal  value - a  = - 2 . 5 0 2 9  . . . .  (1) Thus,  it can  be concluded that  

l im A(n+~) - - -  a (3.5) 
n-)~o A(,)  

Let us consider a ratio between 7 (') and  7 ( '+  1) at  points  r and  r '  with 
corresponding stability for the 2"- and  2"+Lpo in t  cycle. A mot ion  of 
2" + kpo in t  cycle can  be  divided into two a lmost  similar cycles of dura t ion  
2". I t  follows that  

F'(xi(")'r) ~- F'lx('+l)k ' , r'~)-- Fqx("+')'r')k i+2" (3.6) 

Since 7~ ") can be writ ten by  2A (n)/F,,(x~n), r), f rom (3.5) we obta in  

71,+ 1),., _ aV~,) (3.7) 

(3.6) and  (3.7) lead 

~/(n+l)...N __Od~/(. ) for 2 < i < 2 n (3.8) 

since 
i i 

~t(n+l)= ~t~"+l)/ H Ft(X)n+l)'r') ~- --OL~n)/ I-[ F'(x) n)'r) 
j=2 j = 2  

F r o m  (3.6), the other  y/(~+l), 2 ~ + 1 < i < 2 ~+1, are approx imate ly  related 
to y/(n) as 

(n+l)  .~(n) for  1 < i < 2" (3.9) i+2 n ~--- 
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since 
2 n 2 n 

(n+l )  Yi+z" = /-I F'(x)"+l),r') = I'[ F'(x)"),r)=Yff ) 
j = i + 2 " + l  j = i + l  

Then, using (3.7), (3.8), and (3.9), we find that 

~(n+ 1) ~ (1 + a2)l/2y(") (3.10) 

where (1 + a2) 1/2 = 2.6952 . . . .  The ratio 7("+1)/7 (") has been numeri- 
cally calculated for the logistic difference equation. We found that the ratio 
tends to the value of 2.6445 . . . .  The ratio is possibly universal for a large 
class of maps. 

The basis for the universality is that the amplitudes y (n) satisfy the 
recursion relation derived by Shraiman et al. (12) Regarding y(~) as a 
function of x} ~, n, and r, after some algebra we find the recursion relation 

y(.+ ')(x} "+ 1),r)2= ( F(2")'(F(2~ .+ 1), r), r)g(n)(x} n+ 0, r ) )  2 

+ y(n)(F(2")(x}.+ ,), r), r) 2 (3.11) 

The local form of F(2")(x,r) is known to tend to a universal function as 
n ~  oe. (l) Since (3.11) involves only the universal function as n--)oe, the 
asymptotic solution must be universal. Thus, the ratio we obtained, 

y ( n + l )  
y -- lim - -  - 2 .6445 . . .  (3.12) 

n---~ ~ ~(n) 

must be universal. 

4. DISTRIBUTION FUNCTION 

Using the iterated map (2.4), let us derive the distribution function for 
the fluctuations of A m . Since the condition (2.13) has been imposed, the 
points A m are confined in the region (-[A*[, [A'I) , where A* =-- (2A(n)) - 1. It 
is convenient to rescale A m to A~ = Am~A* and ~m to 4" = ~m/A*. Then, the 
iterated map (2.4) is rewritten by using the new variables as 

Arm+ 1 = !At22--rn -[- x(n) Atm+ ~m (4 .1)  

where (~ ; , )=  0 and ( ~ , ~ ' , ) =  (2A(n)7(n)o)2~mm, =-e2~mm,. From the condi- 
tion (2.13), the standard deviation e is supposed to be much less than unity. 
Hereafter, let us consider the standard deviation E and the stability parame- 
ter X (n) as small parameters and keep only the first and second leading 
terms, say, a second approximation. 
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A time sequence ( ~ ,  A], A~ . . . .  ) with the initial condition A~ = 0 can 
be expressed in terms of ~ under the second approximation. It follows that 

t ~ t t 1 ~ t2  t k o = 0 ,  Al=~o ,  and Am=-~m_2"~x(n)~m_2"l'-~tl for m > 2  

(4.2) 

A (") and 7 (n) depend upon r; therefore, (4.7) may be regarded as a 
function of A, a, and r. In the vicinity of the onset point r~ it is more 
convenient to consider the dependence on a distance r~ - r instead of r. 

The distribution function (4.7) leads to a scaling form which has been 
found in the numerical experiments. (l~ Rescaling ro~ - r ~ (ro~ - r)/8, the 
period of the cycle is doubled and the stability of the resulting cycle 
becomes the same as the one of the old cycle. Remembering that 
A(n+I)/A (n) and .~(n+l)/~(n) tend to the universal values - a  and y, 
respectively, we find 

1 ( A. o r~ - - r )  
p(A; o, ro~ -- r) = ~ t9 a ' /3 ' ~ (4.8) 

1 (1 + A(n)A)exp[ A 2 ] (4.7) 
p ( A ) -  (2~ ) lnv (o~  ~ 2(v("~a) 2 

The probability P(  > a) that A' > a is given by 

P ( >  a)--- f f dxdy g(x)g(y) (4.3) 
( 1 / 2 ) x 2  + x ( ' ) x  + y >>- a 

where g(x)= [(2~r)l/2e]-%xp[ - x2/(2e2)]. Since a probability density p(a) 
is given by - dP/da, 

~176 [ (a-- x2/2-- x(n)x)2+ X2 
= ~ ('  ax  - p(a) (4.4) 

2 ~ ' E  2 . ) -  oo 2e 2 

Keeping only the first and second leading terms in the exponent and 
performing the integration, we get 

1 e p(- 
0(a)  = (2,~), /2 ( 1 _ a)1/2 

The probability density (4.5) is singular at a = 1; however, this is irrelevant 
to the present case, i.e., e << 1. Thus, expanding 1/(1 - a) 1/2 in powers of a, 
we finally obtain 

I (1 + ~ ) e x p ( -  ff~e22 ) (4.6) p(a)- (2~r),/2 E 

On the original scale, the distribution function is written as 



where 

1000 

[A("+ 1)V<"+ 1) I 
13 --= n~oolim I A (,o7(.) i = ay = 2 .5029 . . .  • 2 .6445 . . .  

= 6 .6190 . . .  (4.9) 

The scaling factor fi for the external noise is in good agreement with the 
result of numerical experiments due to Crutchfield et aL (m) It should be 
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Fig. 2. Distr ibutions of fluctuations of A i .  Solid curves show the theoretical distribution 
function (4.7). His tograms are obtained by  numerical  experiments. The adopted dynamical  
system is the logistic difference equat ion x,,+l = r x , ( 1 -  xn). 'The right end points of the 
abscissae are 1/(2A(n)) .  (a) r =  75 = 3 .5692435 . . .  (superstable point  for 25-point cycle), 
o = 3.458 • 10 -6, A (5) = 2 7 1 . 4 . . . ,  .y(5) = 106.5 . . . .  (b) r = F 6 = 3 .5697953 . . .  (super- 
stable point  for 26-point cycle), o = 5.224 • 10 -7,  A (6) = - 6 7 9 . 4  . . . .  ./(6) = 281.8 . . . .  The 
abscissa is stretched by  - a and the ordinate is reduced by  a. 
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noted that the scaling factor is formulated in terms of the derivatives of the 
deterministic map. 

In Fig. 2a, the distribution function (4.6) is compared to a numerically 
constructed histogram for the logistic difference equation with r = r'5 and 
a = 0.2(2A(5)'/(5)) -1 =3.458 • 10 -6. The figure shows good agreement. 
The scaling law (4.8) is also confirmed by numerical experiments. Figure 2b 
shows that, when the abscissa is reversed and stretched by a and the 
ordinate is reduced by o~, the numerical constructed histogram with r = F 6 
and tr = 3.458 • 10-6/6.619 is in good agreement with the one with r = Y5 
and a = 3.458 • 10 -6. 

5. LYAPUNOV NUMBER 

The Lyapunov number, 2~, which is the average of repulsion nearby 
orbits is a useful quantity to investigate the nature of an orbit. A positive 
value implies a repeller, i.e., initial separations exponentially grow, a 
vanishing value implies a marginal situation, i.e., initial separations neither 
grow nor decay, and a negative value implies an attractor. In order to 
investigate the noise effect on the stability, let us derive an analytic 
expression of the Lyapunov number. 

The Lyapunov number is expressed by 

N 
h(r ,o )  = lim 1 ~ - ~  -~ ~ lnlF'(x, ,r)[ (5.1) 

i=l 
where (xi) is produced by (2.1). The control parameter r has been sup- 
posed to be close to F n. We partition the time sequence {xi} with x 0 = x~ n) 
by 2 n cycles as {Xo,X l . . . . .  x2~ (x2",x2~ �9 �9 . ,  x2 . . . .  l} . . . . .  The 
summation in (5.1) is first carried out over 2" points of each cycle as 

X(r,o) = lim 1 ~ 1 lnlxl,)l (5.2) 
H 

M---~ oo M i = I  

where M -- N / 2  ~ and 
2 n -  1 

X~ n) ~ ~ F'(x(i-  1)2"+j, r )  
j = 0  

Remembering that x(i_ 1)2- = x~ ") + A. and that x~ ") is very much close to 
2, a leading term approximation leads to 

X} ") = 2A (") A i + X (") (5.3)  

where A (") and X (n) are defined by (2.5) and (2.6). A higher series 
B(~)A2 + C(n)A3i, where B (') =~r--1 . . . . .  I.x 1("),r)-/1" ("), C (") :--~ F'" ' (x~") ,r)  • 
y~") . . . .  , is of the order of r because y~") ~: et" and A~ is of the order 
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of "g("/o = E/(2A (")) cc ca-" .  Therefore, the higher series does not contrib- 
ute as n ~ oo The point ~(n) , is the second nearest point from ~, so the �9 "a'l + 2 " -  

second leading term for X~.n)can be written by 
2 n 

f "  x}"),r h i F'  x,('),r �9 r)Sxi, l+2.-, + ( ) ) ( ) ,, 

~ . z  (n) r) 
= (X(") + 2A(")A/) r Ix ,+2~ 

Ft(x}n+)2"-l'r) eXi, l + 2 . - ,  ( 5 . 4 )  

where 8xi,1+2 n ,-~ x(i_02~ x}~22 .... 6x/.1+2.-, is approximately of 
the order of 7 ( . - o a  and F'(x}n+)2~ ) is approximately of the order of 
a / v } n - O ~ f " ( g , r ) a / ( 2 A ( " - O ) ,  because 7}")~ -,("-Omt,'(n) _,..(n-l) l l  - -  \ ~ 1 + 2 "  I~rJg l  , 
which is followed by the definition. Therefore, (5.4) turns out to be of the 
order of (X (") + e)2A ( " - 0 7 ( " - % / a  ~ (X (~) + e)e/afl ,  where aft ~ 17. It is 
concluded from the estimation that the formula (5.3) is sufficient for the 
calculation of the Lyapunov number  up the second-order approximation. 

(5.2) is also expressed by the alternative form as 

? , ( r , a )=  lim 1 ~ l l n ~ [ =  lim ~ -Mln  dAM[ �9 , - . o  (5.5) 
i = l  

because dA~+l/dA ~ = 2A(")Ai + X ('), which is obtained by differentiating 
the iterated map Ai+ 1 = A (n) A 2 + X (") A~ + ~i under a fixed ~. From (5.5), it 
seems that [dAM[ = exp[2"M~(r, a)][dA l[, which clarifies the physical mean- 
ing of the Lyapunov number�9 

Using the distribution function (4.7) for A~, the summation in (5.2) can 
be transformed into the integration form as 

X(r,o) = 1 ; ~  1 
( 2 v ) l / 2 v ( n ) o  

• (1 + A(~)h)exp] 
[ 

lnl2A(")h+ X(")[ 

A2 ] dh  (5.6) 

Put t ingy --= A/(7(n)o), we get the integration form of the Lyapunov number  
a s  

l f_' ~ 1 lnlcy + X(n)l(1 + )exp dy (5.7) h(r ,a)  = ~-~ ~ (2r -~ -- 

where e = 2A (n)y(n)o. 
At a superstable point r = F, the formula is simply expressed in terms 

of a as 

1 (ln[2A(~)7(n)a] + C)  (5.8) x(F . ,  = 
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where C ------ (2~r'/2) - 'f~_ oolnlylexp(-y2/2) dy -- - 0.635 . . . .  When 
21A (") I,r(")o <0.5, the analytic form (5.8) is in good agreement with the 
numerical results as shown in Fig. 3a. 

When r v a f, and Ie[ << IX (") I, (5.7) can be written by 

X(r, o) = ~ y ;  1 lnlx(.) I + ~Y 1 ey 2 
oo (2,/r) 1/2 X (n) 2 

Ey y2 

_ _ E )2.  
(5.9) 

It follows that the Lyapunov number decreases when a sufficiently weak 
noise is added. That is, it shows that, if the external noise level o is weaker 
than about IX(")/(2A(")-y("))[, the noisy orbit is more stable than the 
deterministic one. This seems to be strange. However, the following consid- 
eration (l~ clarifies the effect. The noisy orbit may be regarded as a 
wandering motion over points on the attractors at adjacent control parame- 
ter values. The effect of fluctuations is to average the structure of determin- 
istic attractors over some range of nearby parameters. The Lyapunov 
number can be obtained by the average of X in the deterministic fimit as 
X(r,0)+ d)t/dr(~r)+ld2X/dr2(Sr2), where ( . . . )  denotes averaging 
and 8r is the parameter deviation from r. Under a sufficiently weak noise, 
(St)  vanishes and (Sr 2) is proportional to 02. (1~ The coefficent �89 d2X/dr = 
is negative. Then we find that X(r,o)- X(r,O)o~�89 0. (14) The 
convexity of the curve X(r, 0) results from the existence of the superstability, 

k 

0 

- 0 . 0  5 

-0.10 

- 0 .15  

21A(nSy(n}o 

I 
f X (n): 0.0 
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0 . . . .  015 

2 IACn)I Y(n}o ! | 

o 

(c) 

-0.5 
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e�9 s ~  
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e, t 

Fig.  3. L y a p u n o v  n u m b e r  vs  e x t e r n a l  no i s e  level .  T h e  c u r v e s  r e p r e s e n t  t he  t h e o r e t i c a l  

f u n c t i o n  (5.7).  T h e  c i rc les  a r e  t he  resu l t s  of  n u m e r i c a l  e x p e r i m e n t s .  T h e  a d o p t e d  d y n a m i c a l  

s y s t e m  is tl~e logis t ic  d i f f e r e n c e  e q u a t i o n  x , +  1 = r x , ( 1  - xn)  a n d  t he  c o n t r o l  p a r a m e t e r  r is 

c h a n g e d  in t he  25-cycle  r eg ion .  ( a )  r = ~5 = 3 . 5 6 9 2 4 3 5 . . .  ( s u p e r s t a b l e  po in t ) ,  X (5) = 0.0, 

A ( 5 ) = 2 7 1 . 4  . . . .  3 , ( 3 ) = 1 0 6 . 5  . . . .  (b)  . . . .  , (9; r = 3 . 5 6 9 1 9 6 8  . . . .  X ( 5 } = 0 . 1 ,  A ( 5 } =  

2 6 3 . 9 . . . ,  ~,(5} = 104.2 . . . .  , O ;  r = 3 .5692898  . . . .  X (5) = - 0 . 1 ,  A (5) = 278.6 . . . .  

7 (3) = 108.8 . . . .  (c)  . . . .  , � 9  r = 3 . 5 6 9 1 4 9 7 . . . ,  X (5} = 0.2, A (5) = 256.1 . . . .  3 '(3) = 101 .8  

. . .  ; , Q ;  r = 3 .5693358  . . . ,  X (5} = - 0 . 2 ,  A (5) = 285 .4  . . . .  7 (5) = 110.9 . . . .  
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i.e., X(7,,0)= - m .  Therefore, this noise effect also occurs in dynamical 
systems exhibiting the superstability within finite parameter regions. 

The behaviors of (5.7) with X (n) = _0.1 and +0.2 are shown in Figs. 
3b and 3c. They are in good agreement with the results of numerical 
experiments in the region of 2lA(n) l y ( ~ ) o ~ 0 . 5 .  Increasing the noise level 
stronger than (4IA (~) I'y(")) - 1, the discrepancy between the formula (5.7) 
and the results of numerical experiments becomes noticeable. The mer- 
gence phenomenon has been observed at 21A~")1~,r in our 
numerical experiments. This shows that our premise fails when 21A (n)13,(,)o 
> 0.5. The numerical results are consistent with the localization condition 
(2.11). 

The Lyapunov number in the vicinity of the onset point r~ satisfies the 
universal scaling theory which has been found by Shraiman et al. ~12) 

Rescaling r ~  - r ~  ( r ~  - r ) / 8  and o---> o / t ,  from (5.7) and (4.9) we also 
obtain the scaling form 

X(ro~ - r,o) = 2~( r~ - r , 

6. CONCLUSIONS 

We have studied the effect of weak external noise. Our theory does not 
involve the mergence phenomenon, which is one of the features observed in 
noisy period doubling phenomena. The limitation concerning the noise 
level, however, makes the discussions clear. Without ambiguous assump- 
tions, we have expressed the Lyapunov number in terms of the noise level 
and the control parameter. The expression satisfies the scaling form. 

We have formulated the scaling factor fl for the noise level in terms of 
the derivatives of the deterministic map. From it we can refine the value 
and show the value tO be universal. The universality is caused by the 
universal structure of (2n)th iterated deterministic map. Therefore, the 
universal effect of noise appears for the weak noise which does not destroy 
the universal structure of the deterministic map. 
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